
German Research Center for
Artificial Intelligence

Software Certification ManagementSoftware Certification Management
How Can Formal Methods Help?How Can Formal Methods Help?

German Research Center for Artificial Intelligence (DFKI GmbH)
Saarbrücken, Germany

Dieter Hutter

Deutsches Forschungszentrum fDeutsches Forschungszentrum füür Kr Küünstliche Intelligenznstliche Intelligenz

German Research Center for
Artificial Intelligence

Software Certification ManagementSoftware Certification Management

Management of dependency and
consistency

Static dependencies:
different layers of specifications

– formal verification

Dynamic dependencies:
changing parts of the development

– management of change
distributed development

– Merge/Patch/Diff

program

informal definition

re
fin

em
en

t

proofs

abstract
specification

requirements

fail
proving detection

repair proving reuse

German Research Center for
Artificial Intelligence

Dynamic DependenciesDynamic Dependencies

Generating proof obligations +
structured database

Changing specification
due to proof failures Translation to a

logical representation

SpecificationSpecification

DeductionDeduction Develop.
Graph

Formal management of change

Spec 1

Proof

Spec 2

„Redundancy“ by formal proofs

German Research Center for
Artificial Intelligence

Formal Formal DevelopmentsDevelopments as as
StructuredStructured ObjectsObjects

SignatureCertCard TerminalSec. Connection

Information

Th ICC
Object

AccessRights

Transition

EventStates

O12

ICC Function

AutomatonSec. Channel

ICC

O2
O2O2O2

O2
∀x,y Φ(x, y) = (λz . ∆(x,y,z) a)

True

∀x,y Φ(x, y) = ∆(x,y,a)

∀x,y Φ(x, y) = Φ(x, y)

Axioms, Logic, Calculus
o5.buck = tbucks.bckobjects and o5.buck' = tbucks.bckautomaton and
(EX o5.newvalue : (o5.command = tterminal.ifddomodify(tobjectids.obj5,

o5.newvalue)

taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.armodify)
-> (o5.value‘ = tmaybe{tinformation.information}.def (o5.newvalue) and

o5.valueout' = tcard.answermodified))

(not taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.armodify)
-> (o5.value = o5.value and o5.valueout' = tcard.answerdenied)))

o5.buck = tbucks.bckobjects and o5.buck' = tbucks.bckautomaton
and o5.command = tterminal.ifddoread(tobjectids.obj5)
and (taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)

-> o5.valueout' = o5.value)
and (not taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)

-> o5.valueout' = tcard.answerdenied)
and o5.value = o5.value'))_{(o5.value, o5.valueout, o5.buck)}

o5.buck = tbucks.bckobjects and o5.buck' = tbucks.bckautomaton
and (EX o5.i, o5.j :

(o5.command = tterminal.ifddoverify(o5.i, o5.j)
and (taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.aruse)

-> (o5.valueout' = tcard.answersuccess
or o5.valueout' = tcard.answerfailure)) ...

Signature
morphisms

German Research Center for
Artificial Intelligence

Verification of PropertiesVerification of Properties

• Types of „properties“:
– Structured properties: decomposition
– Elementary properties:

formal or „informal“ proof

• Decomposition und composition:
– Properties are decomposed according to the structure

of the doucments
– Reuse of properties of unchanged objects
– Synthesis of properties for changed or new objects

German Research Center for
Artificial Intelligence

MAYA MAYA –– Managing Formal DevelopmentsManaging Formal Developments

German Research Center for
Artificial Intelligence

MAYA MAYA -- SpecificationSpecification

German Research Center for
Artificial Intelligence

StructuralStructural DecompositionDecomposition of of
ProofProof ObligationsObligations

Th implies Th‘

Th implies Ax1 Th implies Axm

Φ1 ∈ Th Φk ∈ Th

Decomposition by
theorem prover

Th implies Th1‘ Th implies Thn‘ Th implies Ax(Th‘)

Decompositions by
„theory“ prover

German Research Center for
Artificial Intelligence

Example: DevelopmentExample: Development GraphsGraphs

• Logic based representation of
structured formal developments

• Specifications and implementations
as theories (consequence relations)

• Formal relations between parts of
developments (morphisms)

• supports different formalisms
(logics) to represent different parts

Now used
• to define proof theory of CASL
• to specify structuring in OMDoc

German Research Center for
Artificial Intelligence

StructuringStructuring Mechanisms in Mechanisms in
Formal MethodsFormal Methods

Graph

Formulas

subgraph ≃ theory

node ≃ list of axioms

axiom ≃ formula

Local links:
{σ(axiom1,1) ... σ(axiom1,n)} ∈ theory2

Global links:
σ(theory1) ⊆ theory2

Structured propertiesStructured objects

signature Inference step

Proof object

D
ecom

position

Verification in the large

Verification in the small

German Research Center for
Artificial Intelligence

LessonsLessons LearnedLearned

• Structured objects:
– E.g. theories, formulas, terms, signature
– E.g. document, chapter, section, paragraph
– Acyclic graphs as object representation

• Structured properties between objects:
– E.g. satisfiesTh, satisfiesAx(Th) , satisfiesɸ

• Decomposition rules along object structure
– E.g. satisfiesTh by using satisfiesAx(Th) for all subtheories

• Calculi to prove properties on various levels

• Rules to adapt inference steps in case of changes

German Research Center for
Artificial Intelligence

Distibuted DevelopmentDistibuted Development

• Distributed development
– Update of local developments
– Merge of different branches
– Notion of conflicting developments
⇒ Integration of different specifications

• Analysis, retrieval and repair of derived properties
– Reuse of proofs
– Transfer of informal knowledge
⇒Translation of proof work in common

development

German Research Center for
Artificial Intelligence

DistributedDistributed Development (CVS)Development (CVS)

Re
po

si
to

ry

Dev Dev

commit
Dev1 Dev2

update

commit

update

Dev3

update
Dev3

Merge

update

German Research Center for
Artificial Intelligence

ConsistencyConsistency of (Distributed)of (Distributed) DevelopmentsDevelopments

• Development as a collection of various (types of)
documents

• By „consistency“ we mean
– Preserving syntactical correctness
– Preserving the static semantics
– Preserving proofs (properties)

e.g.:
• Implementation satisfies requirement specification
• Specification ensures security requirements
• Dependencies in the documentation of the project

German Research Center for
Artificial Intelligence

MergingMerging DistributedDistributed DevelopmentsDevelopments

• CVS: conflict occurs iff the same text-line is
changed in both developments

• Using structured objects:
– Non-local effects of changes!
– General rule:

• Single-worker rule:
conflict occurs if a developer inserts or edits an
object that depends on a object changed or deleted
by another developer

German Research Center for
Artificial Intelligence

DecompositionDecomposition of of SemanticSemantic ConflictsConflicts

• Containment defines structuring of objects

• Decomposition rules to unfold
dependency of composed objects
into dependencies of subobjects:

e.g. B < D into (A < C, ...)

• Instead demanding single-worker-rule
for B < D we demand single-worker-rule
for A < C, ...

A
B

C
D

Use B
Use A

German Research Center for
Artificial Intelligence

WhatWhat isis a a SemanticSemantic ConflictConflict ??

conflict occurs if a developer inserts or edits
an object that depends on a object changed
or deleted by another developer

⇒ no randomly generated dependencies
are allowed (single-worker-rule):

Bmerge < Dmerge implies
(Bmerge = B1 ∧ Dmerge = D1) ∨
(Bmerge = B2 ∧ Dmerge = D2)

Dev

Dev2

Devmerge

Dev1

German Research Center for
Artificial Intelligence

DependenciesDependencies in MAYAin MAYA

Nats

Spec Nat =
free type Nat ::= 0| succ(Nat)

Op: ≤ : Nat, Nat → Boolean
∀x:nat 0 ≤ succ(x) ...

Op: plus : Nat → Nat
∀x:nat plus(0, x) = x ...

List of Nats

Spec List =
free type List ::= nil | cons(Nat, LIST)

Op: sorted : List → Boolean
∀x,y:nat, z:List

sorted(cons(x, cons(y, z))) → x ≤ y ...

Op: reverse : List → List
reverse(nil) = nil ...

Imports: Nats

German Research Center for
Artificial Intelligence

DecompositionDecomposition in in itsits ExtremeExtreme

f(a, g(b))

f(a, g(b), c)f(a, g(b, a))

Change(g), add(s, 2, a)

f(a, g(b, a), c)

Change(f), add(t, 3, c) Change(g), add(s, 2, a)

Change(f), add(t, 3, c)
f(a, g(b))

f(a, g(b), g(c))f(a, g(b, a))

Change(g), add(s, 2, a) Change(f), add(t, 3, g(c))

Clash

Semantic clash: no merge possible!Semantic clash: no merge possible!

German Research Center for
Artificial Intelligence

ConclusionConclusion

• Formal methods can help !!!
• Helps for a formal semantics for decomposing and

composing certifications
• Formal semantics for individual „certificates“
• Support for a management of change

– proofs as formal representation of certificates
– effects of changes

